Analyzing Longitudinal Data Using Gee-Smoothing Spline
نویسنده
چکیده
This paper considers nonparametric regression to analyze longitudinal data. Some developments of nonparametric regression have been achieved for longitudinal or clustered categorical data. For exponential family distribution, Lin & Carroll [6] considered nonparametric regression for longitudinal data using GEE-Local Polynomial Kernel (LPK). They showed that in order to obtain an efficient estimator, one must ignore within subject correlation. This means within subject observations should be assumed independent, hence the working correlation matrix must be an identity matrix. With Lin & Carroll [6], to obtain efficient estimates we should ignore correlation that exist in longitudinal data, even if correlation is the interest of the study. In this paper we propose GEE-Smoothing spline to analyze longitudinal data and study the property of the estimator such as the bias, consistency and efficiency. We use natural cubic spline and combine with GEE of Liang & Zeger [5] in estimation. We want to explore numerically, whether the properties of GEE-Smoothing spline are better than of GEE-Local Polynomial Kernel that proposed by Lin & Carrol [6]. Using simulation we show that GEE-Smoothing Spline is better than GEE-local polynomial. The bias of pointwise estimator is decreasing with increasing sample size. The pointwise estimator is also consistent even with incorrect correlation structure, and the most efficient estimate is obtained if the true correlation structure is used. Key–Words: Nonparametric regression, Longitudinal binary data, Generalized estimating equation, Natural cubic spline, Property of estimator.
منابع مشابه
Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model
Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...
متن کاملمعادلات برآورد تعمیم یافته و کاربرد آن در تحلیل داده های کولیک شیرخوارگی
Introdiuction and objective: Many Studies about Epidemiology and medical sciences that measured desired outcome at frequently individuals over times are done based on a longitudinal design. the features of a data set is repeated observes . For this reason , requirement of independence observation in longitudinal data is violated that causes this kind of data needs the specific statistical metho...
متن کاملFast covariance estimation for sparse functional data
Smoothing of noisy sample covariances is an important component in functional data analysis. We propose a novel covariance smoothing method based on penalized splines and associated software. The proposed method is a bivariate spline smoother that is designed for covariance smoothing and can be used for sparse functional or longitudinal data. We propose a fast algorithm for covariance smoothing...
متن کاملEquivalent kernels of smoothing splines in nonparametric regression for clustered/longitudinal data
S For independent data, it is well known that kernel methods and spline methods are essentially asymptotically equivalent (Silverman, 1984). However, recent work of Welsh et al. (2002) shows that the same is not true for clustered/longitudinal data. Splines and conventional kernels are different in localness and ability to account for the within-cluster correlation. We show that a smoothi...
متن کاملA Non-Random Dropout Model for Analyzing Longitudinal Skew-Normal Response
In this paper, multivariate skew-normal distribution is em- ployed for analyzing an outcome based dropout model for repeated mea- surements with non-random dropout in skew regression data sets. A probit regression is considered as the conditional probability of an ob- servation to be missing given outcomes. A simulation study of using the proposed methodology and comparing it with a semi-parame...
متن کامل